博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
吴恩达深度学习笔记 course2 week1 作业1
阅读量:5294 次
发布时间:2019-06-14

本文共 18855 字,大约阅读时间需要 62 分钟。

Initialization

Welcome to the first assignment of "Improving Deep Neural Networks".

Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning.

If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results.

A well chosen initialization can:

  • Speed up the convergence of gradient descent
  • Increase the odds of gradient descent converging to a lower training (and generalization) error

To get started, run the following cell to load the packages and the planar dataset you will try to classify.

In [1]:
 
 
 
 
 
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation
from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec
%matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# load image dataset: blue/red dots in circles
train_X, train_Y, test_X, test_Y = load_dataset()
 
 
 
 

You would like a classifier to separate the blue dots from the red dots.

 

1 - Neural Network model

 

You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with:

  • Zeros initialization -- setting initialization = "zeros" in the input argument.
  • Random initialization -- setting initialization = "random" in the input argument. This initializes the weights to large random values.
  • He initialization -- setting initialization = "he" in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015.

Instructions: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this model()calls.

In [14]:
 
 
 
 
 
def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"):
"""
Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.
 
Arguments:
X -- input data, of shape (2, number of examples)
Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples)
learning_rate -- learning rate for gradient descent
num_iterations -- number of iterations to run gradient descent
print_cost -- if True, print the cost every 1000 iterations
initialization -- flag to choose which initialization to use ("zeros","random" or "he")
 
Returns:
parameters -- parameters learnt by the model
"""
 
grads = {}
costs = [] # to keep track of the loss
m = X.shape[1] # number of examples
layers_dims = [X.shape[0], 10, 5, 1]
 
# Initialize parameters dictionary.
if initialization == "zeros":
parameters = initialize_parameters_zeros(layers_dims)
elif initialization == "random":
parameters = initialize_parameters_random(layers_dims)
elif initialization == "he":
parameters = initialize_parameters_he(layers_dims)
# Loop (gradient descent)
for i in range(0, num_iterations):
# Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.
a3, cache = forward_propagation(X, parameters)
 
# Loss
cost = compute_loss(a3, Y)
# Backward propagation.
grads = backward_propagation(X, Y, cache)
 
# Update parameters.
parameters = update_parameters(parameters, grads, learning_rate)
 
# Print the loss every 1000 iterations
if print_cost and i % 1000 == 0:
print("Cost after iteration {}: {}".format(i, cost))
costs.append(cost)
 
# plot the loss
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
 
return parameters
 
 
 

2 - Zero initialization

There are two types of parameters to initialize in a neural network:

  • the weight matrices (W[1],W[2],W[3],...,W[L1],W[L])(W[1],W[2],W[3],...,W[L−1],W[L])
  • the bias vectors (b[1],b[2],b[3],...,b[L1],b[L])(b[1],b[2],b[3],...,b[L−1],b[L])

Exercise: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes.

In [15]:
 
 
 
 
 
# GRADED FUNCTION: initialize_parameters_zeros
def initialize_parameters_zeros(layers_dims):
"""
Arguments:
layer_dims -- python array (list) containing the size of each layer.
 
Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
b1 -- bias vector of shape (layers_dims[1], 1)
...
WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
bL -- bias vector of shape (layers_dims[L], 1)
"""
 
parameters = {}
L = len(layers_dims)            # number of layers in the network
 
for l in range(1, L):
### START CODE HERE ### (≈ 2 lines of code)
parameters['W' + str(l)] = np.zeros((layers_dims[l],layers_dims[l-1]))
parameters['b' + str(l)] = np.zeros((layers_dims[l],1))
### END CODE HERE ###
return parameters
 
 
In [16]:
 
 
 
 
 
parameters = initialize_parameters_zeros([3,2,1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
 
 
 
W1 = [[ 0.  0.  0.] [ 0.  0.  0.]]b1 = [[ 0.] [ 0.]]W2 = [[ 0.  0.]]b2 = [[ 0.]]
 

Expected Output:

W1 [[ 0. 0. 0.] [ 0. 0. 0.]]
b1 [[ 0.] [ 0.]]
W2 [[ 0. 0.]]
b2 [[ 0.]]
 

Run the following code to train your model on 15,000 iterations using zeros initialization.

In [17]:
 
 
 
 
 
parameters = model(train_X, train_Y, initialization = "zeros")
print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)
 
 
 
Cost after iteration 0: 0.6931471805599453Cost after iteration 1000: 0.6931471805599453Cost after iteration 2000: 0.6931471805599453Cost after iteration 3000: 0.6931471805599453Cost after iteration 4000: 0.6931471805599453Cost after iteration 5000: 0.6931471805599453Cost after iteration 6000: 0.6931471805599453Cost after iteration 7000: 0.6931471805599453Cost after iteration 8000: 0.6931471805599453Cost after iteration 9000: 0.6931471805599453Cost after iteration 10000: 0.6931471805599455Cost after iteration 11000: 0.6931471805599453Cost after iteration 12000: 0.6931471805599453Cost after iteration 13000: 0.6931471805599453Cost after iteration 14000: 0.6931471805599453
 
 
On the train set:Accuracy: 0.5On the test set:Accuracy: 0.5
 

The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary:

In [18]:
 
 
 
 
 
print ("predictions_train = " + str(predictions_train))
print ("predictions_test = " + str(predictions_test))
 
 
 
predictions_train = [[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0]]predictions_test = [[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]
In [19]:
 
 
 
 
 
plt.title("Model with Zeros initialization")
axes = plt.gca()
axes.set_xlim([-1.5,1.5])
axes.set_ylim([-1.5,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
 
 
 
 

The model is predicting 0 for every example.

In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with n[l]=1n[l]=1 for every layer, and the network is no more powerful than a linear classifier such as logistic regression.

 

What you should remember:

  • The weights W[l]W[l] should be initialized randomly to break symmetry.
  • It is however okay to initialize the biases b[l]b[l] to zeros. Symmetry is still broken so long as W[l]W[l] is initialized randomly.

 

 

3 - Random initialization

To break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values.

Exercise: Implement the following function to initialize your weights to large random values (scaled by *10) and your biases to zeros. Use np.random.randn(..,..) * 10 for weights and np.zeros((.., ..)) for biases. We are using a fixed np.random.seed(..) to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters.

In [20]:
 
 
 
 
 
# GRADED FUNCTION: initialize_parameters_random
def initialize_parameters_random(layers_dims):
"""
Arguments:
layer_dims -- python array (list) containing the size of each layer.
 
Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
b1 -- bias vector of shape (layers_dims[1], 1)
...
WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
bL -- bias vector of shape (layers_dims[L], 1)
"""
 
np.random.seed(3)               # This seed makes sure your "random" numbers will be the as ours
parameters = {}
L = len(layers_dims)            # integer representing the number of layers
 
for l in range(1, L):
### START CODE HERE ### (≈ 2 lines of code)
parameters['W' + str(l)] =np.random.randn(layers_dims[l],layers_dims[l-1])*10
parameters['b' + str(l)] =np.random.randn(layers_dims[l],1)
### END CODE HERE ###
return parameters
 
 
In [21]:
 
 
 
 
 
parameters = initialize_parameters_random([3, 2, 1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
 
 
 
W1 = [[ 17.88628473   4.36509851   0.96497468] [-18.63492703  -2.77388203  -3.54758979]]b1 = [[-0.08274148] [-0.62700068]]W2 = [[-0.43818169 -4.7721803 ]]b2 = [[-1.31386475]]
 

Expected Output:

W1 [[ 17.88628473 4.36509851 0.96497468] [-18.63492703 -2.77388203 -3.54758979]]
b1 [[ 0.] [ 0.]]
W2 [[-0.82741481 -6.27000677]]
b2 [[ 0.]]
 

Run the following code to train your model on 15,000 iterations using random initialization.

In [22]:
 
 
 
 
 
parameters = model(train_X, train_Y, initialization = "random")
print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)
 
 
 
 
Cost after iteration 0: infCost after iteration 1000: 0.383323600246845Cost after iteration 2000: 0.3934954918085077Cost after iteration 3000: 0.46441301560248843Cost after iteration 4000: 0.46675685532087235Cost after iteration 5000: 0.41971032185747925Cost after iteration 6000: 0.39172572624761104Cost after iteration 7000: 0.4369988794770602Cost after iteration 8000: 0.47202852941279033Cost after iteration 9000: 0.42648157534899434Cost after iteration 10000: 0.3870587927079653Cost after iteration 11000: infCost after iteration 12000: 0.37276273529398185Cost after iteration 13000: 0.4753009641864962Cost after iteration 14000: 0.36004178879367077
 
 
On the train set:Accuracy: 0.83On the test set:Accuracy: 0.79
 

If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes.

Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s.

In [23]:
 
 
 
 
 
print (predictions_train)
print (predictions_test)
 
 
 
[[0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0  1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0  0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1  1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0  1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1  1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1  1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1  1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1  1 1 1 0]][[1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0  1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1  1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 1 1 0 0]]
In [24]:
 
 
 
 
 
plt.title("Model with large random initialization")
axes = plt.gca()
axes.set_xlim([-1.5,1.5])
axes.set_ylim([-1.5,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
 
 
 
 
 

Observations:

  • The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when log(a[3])=log(0)log⁡(a[3])=log⁡(0), the loss goes to infinity.
  • Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm.
  • If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization.

In summary:

  • Initializing weights to very large random values does not work well.
  • Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part!

 

 

4 - He initialization

Finally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights W[l]W[l] of sqrt(1./layers_dims[l-1]) where He initialization would use sqrt(2./layers_dims[l-1]).)

Exercise: Implement the following function to initialize your parameters with He initialization.

Hint: This function is similar to the previous initialize_parameters_random(...). The only difference is that instead of multiplying np.random.randn(..,..) by 10, you will multiply it by 2dimension of the previous layer⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√2dimension of the previous layer, which is what He initialization recommends for layers with a ReLU activation.

In [35]:
 
 
 
 
 
# GRADED FUNCTION: initialize_parameters_he
def initialize_parameters_he(layers_dims):
"""
Arguments:
layer_dims -- python array (list) containing the size of each layer.
 
Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
b1 -- bias vector of shape (layers_dims[1], 1)
...
WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
bL -- bias vector of shape (layers_dims[L], 1)
"""
 
np.random.seed(3)
parameters = {}
L = len(layers_dims) - 1 # integer representing the number of layers
 
for l in range(1, L + 1):
### START CODE HERE ### (≈ 2 lines of code)
parameters['W' + str(l)] = np.random.randn(layers_dims[l],layers_dims[l-1])*np.sqrt(2./layers_dims[l-1])
parameters['b' + str(l)] =np.zeros((layers_dims[l],1))
### END CODE HERE ###
 
return parameters
 
 
In [36]:
 
 
 
 
 
parameters = initialize_parameters_he([2, 4, 1])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
 
 
 
W1 = [[ 1.78862847  0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882  -0.35475898] [-0.08274148 -0.62700068]]b1 = [[ 0.] [ 0.] [ 0.] [ 0.]]W2 = [[-0.03098412 -0.33744411 -0.92904268  0.62552248]]b2 = [[ 0.]]
 

Expected Output:

W1 [[ 1.78862847 0.43650985] [ 0.09649747 -1.8634927 ] [-0.2773882 -0.35475898] [-0.08274148 -0.62700068]]
b1 [[ 0.] [ 0.] [ 0.] [ 0.]]
W2 [[-0.03098412 -0.33744411 -0.92904268 0.62552248]]
b2 [[ 0.]]
 

Run the following code to train your model on 15,000 iterations using He initialization.

In [37]:
 
 
 
 
 
parameters = model(train_X, train_Y, initialization = "he")
print ("On the train set:")
predictions_train = predict(train_X, train_Y, parameters)
print ("On the test set:")
predictions_test = predict(test_X, test_Y, parameters)
 
 
 
Cost after iteration 0: 0.8830537463419761Cost after iteration 1000: 0.6879825919728063Cost after iteration 2000: 0.6751286264523371Cost after iteration 3000: 0.6526117768893807Cost after iteration 4000: 0.6082958970572938Cost after iteration 5000: 0.5304944491717495Cost after iteration 6000: 0.4138645817071794Cost after iteration 7000: 0.3117803464844441Cost after iteration 8000: 0.23696215330322562Cost after iteration 9000: 0.18597287209206836Cost after iteration 10000: 0.1501555628037182Cost after iteration 11000: 0.12325079292273548Cost after iteration 12000: 0.09917746546525937Cost after iteration 13000: 0.0845705595402428Cost after iteration 14000: 0.07357895962677366
 
 
On the train set:Accuracy: 0.993333333333On the test set:Accuracy: 0.96
In [38]:
 
 
 
 
 
plt.title("Model with He initialization")
axes = plt.gca()
axes.set_xlim([-1.5,1.5])
axes.set_ylim([-1.5,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
 
 
 
 

Observations:

  • The model with He initialization separates the blue and the red dots very well in a small number of iterations.
 

5 - Conclusions

 

You have seen three different types of initializations. For the same number of iterations and same hyperparameters the comparison is:

Model Train accuracy Problem/Comment
3-layer NN with zeros initialization 50% fails to break symmetry
3-layer NN with large random initialization 83% too large weights
3-layer NN with He initialization 99% recommended method
 

What you should remember from this notebook:

  • Different initializations lead to different results
  • Random initialization is used to break symmetry and make sure different hidden units can learn different things
  • Don't intialize to values that are too large
  • He initialization works well for networks with ReLU activations.

 

总结:不同的初始化会导致不同的结果;

随机初始化被用来打破对称,确定不同的隐藏单元能学习不同的内容

初始化权重不能太大

He 初始化对于ReLU为激活函数的情况下会取得很好的效果

转载于:https://www.cnblogs.com/Dar-/p/9382720.html

你可能感兴趣的文章
20141026--娱乐-箱子
查看>>
自定义分页
查看>>
Oracle事务
查看>>
任意输入10个int类型数据,把这10个数据首先按照排序输出,挑出这些数据里面的素数...
查看>>
String类中的equals方法总结(转载)
查看>>
图片问题
查看>>
bash使用规则
查看>>
AVL数
查看>>
第二章练习
查看>>
ajax2.0
查看>>
C#时间截
查看>>
C语言程序设计II—第九周教学
查看>>
C# 获取系统时间及时间格式转换
查看>>
2018-2019-2-20175332-实验四《Android程序设计》实验报告
查看>>
全栈12期的崛起之捡点儿有用的说说
查看>>
基础类型
查看>>
属性动画
查看>>
标识符
查看>>
Sqli labs系列-less-4 这关好坑!!!
查看>>
路由跟踪工具0trace
查看>>